2,280 research outputs found

    Understanding exposure for reverse tone mapping

    Get PDF
    High dynamic range (HDR) displays are capable of providing a rich visual experience by boosting both luminance and contrast beyond what conventional displays can offer.We envision that HDR capture and display hardware will soon reach the mass market and become mainstream in most fields, from entertainment to scientific visualization. This will necessarily lead to an extensive redesign of the imaging pipeline. However, a vast amount of legacy content is available, captured and stored using the traditional, low dynamic range (LDR) pipeline. The immediate question that arises is: will our current LDR digital material be properly visualized on an HDR display? The answer to this question involves the process known as reverse tone mapping (the expansion of luminance and contrast to match those of the HDR display) for which no definite solution exists. This paper studies the specific problem of reverse tone mapping for imperfect legacy still images, where some regions are under- or overexposed. First, we show the results of a psychophysical study compared with first-order image statistics, in an attempt to gain some understanding in what makes an image be perceived as incorrectly exposed; second, we propose a methodology to evaluate existing reverse tone mapping algorithms in the case of imperfect legacy content

    Guidance of sentinel lymph node biopsy decisions in patients with T1-T2 melanoma using gene expression profiling.

    Get PDF
    AIM: Can gene expression profiling be used to identify patients with T1-T2 melanoma at low risk for sentinel lymph node (SLN) positivity? PATIENTS & METHODS: Bioinformatics modeling determined a population in which a 31-gene expression profile test predicted \u3c5% SLN positivity. Multicenter, prospectively-tested (n = 1421) and retrospective (n = 690) cohorts were used for validation and outcomes, respectively. RESULTS: Patients 55-64 years and ≥65 years with a class 1A (low-risk) profile had SLN positivity rates of 4.9% and 1.6%. Class 2B (high-risk) patients had SLN positivity rates of 30.8% and 11.9%. Melanoma-specific survival was 99.3% for patients ≥55 years with class 1A, T1-T2 tumors and 55.0% for class 2B, SLN-positive, T1-T2 tumors. CONCLUSION: The 31-gene expression profile test identifies patients who could potentially avoid SLN biopsy

    Health-related quality of life in the Cambridge City over-75s Cohort (CC75C): development of a dementia-specific scale and descriptive analyses.

    Get PDF
    BACKGROUND: The assessment of Health Related Quality of Life (HRQL) is important in people with dementia as it could influence their care and support plan. Many studies on dementia do not specifically set out to measure dementia-specific HRQL but do include related items. The aim of this study is to explore the distribution of HRQL by functional and socio-demographic variables in a population-based setting. METHODS: Domains of DEMQOL's conceptual framework were mapped in the Cambridge City over 75's Cohort (CC75C) Study. HRQL was estimated in 110 participants aged 80+ years with a confirmed diagnosis of dementia with mild/moderate severity. Acceptability (missing values and normality of the total score), internal consistency (Cronbach's alpha), convergent, discriminant and known group differences validity (Spearman correlations, Wilcoxon Mann-Whitney and Kruskal-Wallis tests) were assessed. The distribution of HRQL by socio-demographic and functional descriptors was explored. RESULTS: The HRQL score ranged from 0 to 16 and showed an internal consistency Alpha of 0.74. Validity of the instrument was found to be acceptable. Men had higher HRQL than women. Marital status had a greater effect on HRQL for men than it did for women. The HRQL of those with good self-reported health was higher than those with fair/poor self-reported health. HRQL was not associated with dementia severity. CONCLUSIONS: To our knowledge this is the first study to examine the distribution of dementia-specific HRQL in a population sample of the very old. We have mapped an existing conceptual framework of dementia specific HRQL onto an existing study and demonstrated the feasibility of this approach. Findings in this study suggest that whereas there is big emphasis in dementia severity, characteristics such as gender should be taken into account when assessing and implementing programmes to improve HRQL

    Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity

    Get PDF
    Nanomaterials have been the object of intense study due to promising applications in a number of different disciplines. In particular, medicine and biology have seen the potential of these novel materials with their nanoscale properties for use in diverse areas such as imaging, sensing and drug vectorisation. Gold nanoparticles (GNPs) are considered a very useful platform to create a valid and efficient drug delivery/carrier system due to their facile and well-studied synthesis, easy surface functionalization and biocompatibility. In the present study, stable antibiotic conjugated GNPs were synthesised by a one-step reaction using a poorly water soluble antibiotic, amoxicillin. Amoxicillin, a member of the penicillin family, reduces the chloroauric acid to form nanoparticles and at the same time coats them to afford the functionalised nanomaterial. A range of techniques including UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were used to ascertain the gold/drug molar ratio and the optimum temperature for synthesis of uniform monodisperse particles in the ca. 30-40 nm size range. Amoxicillin-conjugated gold showed an enhancement of antibacterial activity against Escherichia coli compared to the antibiotic alone

    Convective Nonlinearity in Non-Newtonian Fluids

    Full text link
    In the limit of infinite yield time for stresses, the hydrodynamic equations for viscoelastic, Non-Newtonian liquids such as polymer melts must reduce to that for solids. This piece of information suffices to uniquely determine the nonlinear convective derivative, an ongoing point of contention in the rheology literature.Comment: 4 page

    Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels

    Get PDF
    We explore the use of rheo-small-angle neutron scattering as a method to collect structural information from neutron scattering simultaneously with rheology to understand how low-molecular-weight hydrogels form and behave under shear. We examine three different gelling hydrogel systems to assess what structures are formed and how these influence the rheology. Furthermore, we probe what is happening to the network during syneresis and why the gels do not recover after an applied strain. All this information is vital when considering gels for applications such as 3D-printing and injection

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    Hybrid Thermo-Electrochemical In Situ Instrumentation for Lithium-Ion Energy Storage

    Get PDF
    Current “state‐of‐the‐art” monitoring and control techniques for lithium‐ion cells rely on full‐cell potential measurement and occasional surface temperature measurements. However, Li‐ion cells are complex multi‐layer devices and as such these techniques have poor resolution, limiting applicability. In this work we develop hybrid thermo‐electrochemical sensing arrays placed within the cell. The arrays are integrated into A5 pouch cells during manufacture and are used to create thermal maps in parallel with anode and cathode electrochemical data. The sensor array can be adapted to a range of cell formats and chemistries and installed into commercial or other industrially relevant cells, incorporating enhanced thermal and electrochemical diagnostic capability into a standard cell build

    Direct photon production with effective field theory

    Get PDF
    The production of hard photons in hadronic collisions is studied using Soft-Collinear Effective Theory (SCET). This is the first application of SCET to a physical, observable cross section involving energetic partons in more than two directions. A factorization formula is derived which involves a non-trivial interplay of the angular dependence in the hard and soft functions, both quark and gluon jet functions, and multiple partonic channels. The relevant hard, jet and soft functions are computed to one loop and their anomalous dimensions are determined to three loops. The final resummed inclusive direct photon distribution is valid to next-to-next-to-leading logarithmic order (NNLL), one order beyond previous work. The result is improved by including non-logarithmic terms and photon isolation cuts through matching, and compared to Tevatron data and to fixed order results at the Tevatron and the LHC. The resummed cross section has a significantly smaller theoretical uncertainty than the next-to-leading fixed-order result, particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos; v4: typos, corrections in (16), (47), (72

    The Quark Beam Function at NNLL

    Get PDF
    In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale \mu_B << Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At \mu_B, the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos fixed; v3: journal versio
    corecore